One of the topics of this edition is an overview of the ESWD entries for the period April to July 2018. Read the full newsletter here.
Category Archives: News
Registration now open for 2019 activities
Registration for most ESSL events in 2019 including the ESSL Testbed is now open. You can find an overview of our activities here.
Brandnew training courses include a specialized seminar for convective windstorms/tornadoes and specialized seminars for aviation forecasters.
As a new service we offer a pretest in the form of an online quiz for people who are unsure which seminar to attend.
Only the ECSS registration is not yet open. Conference registration will open in late autumn 2018.
ESSL Testbed talks week 4
On our ESSL Testbed Blog, the presentations schedule for this week has been updated. Everyone can join these presentations remotely.
Presenters will be Helge Tuschy and Ulrich Blahak (both DWD, Germany), and Thomas August (EUMETSAT).
ESSL Newsletter 2018/1 published
The latest ESSL Newsletter contains the following topics:
- ESWD summary of 2017. As an example, over 16,000 reports of severe wind gusts were entered to the database last year.
- Five new peer-reviewed publications related to ESSL research have been published recently.
- New training events have been fixed in the past few days, including tailored events for aviation meteorology.
You can download the full newsletter here.
ESSL Testbed 2018 started
On 11 June 2018 the new edition of the ESSL Testbed started in our ESSL Research and Training Centre in Wiener Neustadt, Austria. The ESSL Testbed is fully booked out.
You can follow our activities via our daily Testbed Blog entries here.
The Tue-Fri 9 UTC weather briefings are broadcast via BlueJeans. Please follow the instructions here to join our online briefings.
Forensic research method for tornadoes presented
At least 34 fatalities in Wiener Neustadt tornado: Our ESSL paper on the research method for historical tornado cases just appeared in the EGU journal NHESS today:
Holzer, A. M., Schreiner, T. M. E., and Púčik, T.: A forensic re-analysis of one of the deadliest European tornadoes, Nat. Hazards Earth Syst. Sci., 18, 1555-1565, https://doi.org/10.5194/nhess-18-1555-2018, 2018.
https://www.nat-hazards-earth-syst-sci.net/18/1555/2018/
(open access)
The severe convective weather season of 2018 has started
During recent days, pronounced severe convective storm activity has occurred across Europe, reports of which have been collected into the ESWD with help of ESSL’s partners. In total, we have received over 360 reports in the past 7 days. A majority of them were of large hail (184 reports), followed by severe wind gusts (79 reports) and heavy rainfall (66 reports). The first notable event was 29th April, where a tornadic supercell tracked more than 500 km from central France to Belgium. Wind damage caused by this supercell is still being investigated to confirm possible occurrence of several tornadoes along its path. On 1 May, a long-lived supercell over eastern Poland produced a hail swath 300 km long with hail up to 5 cm in diameter. And one day later, series of severe storms struck Croatia, Slovenia, Hungary and Austria. Hail up to 6 cm in diameter was observed over northeastern Slovenia, damaging houses and numerous flash floods were reported from Vienna, where storms persisted for several hours.
Flash floods in Austria and Slovenia
Anticipating situations conducive to flash flooding may be quite tricky, as it often takes a quasi-stationary, long-lived thunderstorm to deliver several waves of heavy rainfall over an area. Yesterday was no exception. Thunderstorms formed in an environment featuring moist, southeasterly flow at the surface, CAPE values on the order of several hundred J/kg and an increasing southerly flow aloft (Fig. 2). A very moist profile in low to mid troposphere along with low cloud bases was evident, both from the forecast sounding over southeastern Austria and from the observed sounding in Zagreb, Croatia (Fig. 3). These conditions suggested a potential for very heavy rainfall with thunderstorms as little precipitation would evaporate when falling from the cloud.
Even so, the increasingly southerly flow aloft meant that thunderstorms could hardly stay confined to one location and would move northward with time. Yet, that has not happened, as one can see from this radar animation shared by ZAMG, which reveals a number of instances of storms stagnating over one particular location. This is because storms were propagating (propagation represents the movement of the thunderstorm caused by the formation of new cells) along the convergence zone towards the moister and more unstable airmass in the south. With a mid- to upper-tropospheric flow almost parallel to the convergence zone and the propagation cancelling out the advection of individual cells to the north by mean wind, some of the thunderstorm clusters became quasi-stationary and produced excessive rainfall.
This case shows how demanding it can be to correctly anticipate flash flood situations with thunderstorms when numerical models underestimate the rainfall sums, which is often the case with convective phenomena.
Convective windstorms in 2017 Episode 3: 11 August
The third most socially impactful convective windstorm case in 2017 occurred on 11 August, in a belt from the northern Czech Republic to northern Poland with 6 fatalities and many injuries.
Situation began with a quasi-linear convective system over Austria and the Czech Republic, which formed around 10 UTC, paralleling strong prevailing flow in low to mid troposphere. However, at this point, only marginally large hail and heavy rain occurred as the system remained elevated. System progressed northward towards the borders of the Czech Republic and Poland, encountering progressively warmer airmass near the surface. As soon as the system became surface based around 15 UTC, it began producing severe wind gusts (Fig. 1). Widespread forest blow downs were noticed already on the Czech side of the border. As the system moved towards north-northeast, it encountered increasingly favourable conditions for severe convection, strengthened and eventually transformed into a large bow-echo at 18 UTC. Just before this transition, an embedded supercell formed within the system, as evidenced by high reflectivities near the apex of the system (Fig. 2). Besides severe wind gusts, large hail up to 5.5 cm was observed at this point. Transition into the bow-echo was accompanied by a rapid increase in the severe wind damage reports. As the system moved offshore to the Baltic Sea after 22 UTC, it produced a 42 m/s wind gust at Milejewo near the coastline. A continuous swath of wind damage was noted from the northern Czech Republic all the way towards the Baltic Sea coastline in a 7 hour long rampage. A spectacular shelf cloud accompanied the passage of the bow-echo (Fig. 3)
At the height of the storm, 180 000 customers were out of power and many roads were blocked by fallen trees. Damage to the forestry was widespread (Fig. 4) with 39 200 ha of forests completely destroyed and 40 500 ha partially damaged. The volume of fallen wood reached almost 10 millions of m³. Together with 20 000 damaged buildings and financial costs of the storm estimated in the range of 500 millions to 1 billion €, this was likely the most impactful convective storm to hit Poland in decades.
This convective storm was also record breaking for the ESWD. Altogether, more than 1200 severe weather reports were collected, which constitutes most reports ever submitted per event in the history of the database.
Environment capable of such extreme convective windstorm featured a deep cyclone at 500 hPa centered over the Alpine range with a belt of 20 + m/s southerly flow stretching from Croatia towards western Poland (Fig. 5). A short-wave trough was translating from Austria northwards. At the same time, a wavy frontal boundary extended from northwestern Austria through the Czech Republic into eastern Germany and western Poland (Fig. 6). In this setup, a warm and humid airmass has advected over Poland, with 2 m dew points exceeding 20 °C. Combination of high values of CAPE and a strong lower tropospheric shear, exceeding 20 m/s in the 0-3 km layer, created very favourable conditions for development of a bow echo (Fig. 7). Lift provided by cold pool from the already ongoing convective system and a well defined convergence zone located across western Poland resulted in widespread initiation of new convective cells, which quickly merged into a large convective system.
ESSL would like to thank Skywarn Polska and Amateur Meteorological Society of the Czech Republic for many submitted reports documenting the windstorm case. Furthermore, thank you goes to Artur Surowiecki for information on the impacts of the storm, Mateusz Taszarek and IMGW for the radar data, and Grzegorz Zawiślak for the photo of windstorm damage.
Additional information regarding the windstorm impacts in the Czech Republic can be found here (in Czech) and regarding the forest damage in Poland here (in Polish).
Convective windstorms in 2017 Episode 2: 17 September
The event with the second highest societal impact after the Moscow windstorm, occurred on 17 September in a swath from Bosnia and Herzegovina to Ukraine. It was also the last severe convective windstorm case of 2017. The date is actually well after the climatological peak of severe storm activity in the area, which is in June and July.
The event started with a cluster of thunderstorms impacting Split, Croatia, in the morning hours. This activity produced very large hail up to 5 cm in diameter that resulted in damage to cars. The first severe wind gusts were reported from Bosnia and Herzegovina and the convective system reached its peak intensity as it raced across northern Serbia and southern Ukraine between 11 and 16 UTC (Fig. 1), with measured wind gusts reaching up to 35 m/s. Widespread damage was reported, roofs were torn off of buildings, powerlines snapped and trees uprooted. The last severe wind gust reports were received from around 17 UTC over Ukraine. Overall, the system killed 10 and injured 94 along its track. Some of the damage suggests that much stronger wind speeds, than the measured maximum of 35 m/s, must have been involved.
Radar observations of the storm show that the system, while not very large, involved very high radar reflectivities of over 60 dBz (Fig. 2). Over northwestern Romania, it attained a classic “bow-echo” shape, which is typically associated with damaging wind gusts (Fig. 3). The system moved extremely fast between Serbia and Romania, covering a distance of 400 km in a mere 3 hours.
The fast movement speed could be attributed to the combination of strong background flow in the atmosphere and a strong cold pool of the system, as the temperature dropped by over 10°C at some locations in the path of the storm. The convective system formed ahead of the deep trough with strong southwesterly flow exceeding 30 m/s and 20 m/s at 500 and 700 hPa respectively. (Fig. 4) Combined with southerly to southeasterly flow at the surface of around 5 m/s, very strong vertical wind shear was present, conducive to well-organised convection. The 12 UTC sounding taken from Beograd just south of the storm system reveals very dry air in the lower troposphere and confirms the presence of pronounced vertical wind shear. In this perspective, the situation actually resembles the Moscow case of 29 May 2017. While the original sounding does not show any CAPE, its modification with observed dewpoints above 10°C ahead of the storm shows that enough CAPE was present for development of deep convective updrafts with high cloud bases (Fig. 5).
The presence of rather dry conditions at the surface led to the development of a dust storm along the gust front of the storm. Besides the spectacular appearance (Fig. 6), however, dust storm created very dangerous driving conditions with practically zero visibility, as evidenced by numerous videos submitted by surprised drivers.
ESSL would like to thank Severe Weather Serbia for the wealth of information they provided about this event, as well as Dejan Primorac for his agreement to share the photos of the dust storm.