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Predictability and predictive ability 
of severe rainfall processes 



Flash-flood events in the 
Mediterranean area 



Need for a full hydro-meteorology 
forecasting chain 



network density:  
between 1gauge/50km2 and 1 
gauge/200km2 	


Italian raingauge network:  
about 3000 sensors 



Severe rainfall events 
classification 

Molini et al. (2009, NHESS) 
developed a procedure to 
single out heavy rainfall 
events and to classify 
them on the basis of:  

1. Duration 
2.  Spatial extent  
3.  Large/small-scale 

triggering 



Type I 
d=19 hrs 

Type II 
d= 8 hrs 

Type I events:  
•  Long-lived (lasting 
more than 12 hours) 
•  Spatially distributed 
(more than 50x50 km2)  

Type II events:  
•  Brief and localized (lasting 
less than 12 hours) 
•  Spatially concentrated (less 
than 50x50 km2)  

Severe rainfall events 
classification 



Severe rainfall events 
classification 

Type I events:  
•  no characteristic length 
scale, constant-slope 
spectrum 
Type II events: 
•  ‘two-component’ 
spectrum 



We started applying the event classification 
procedure to the Italian Raingauge Network 
observations in January 2006***. 

139 severe events:  
•  88 events Type I events lasting more than 12 
hours and striking an area bigger than 50x50 km2; 
•  51 events Type II events lasting less than 12 
hours and striking an area smaller than 50x50 km2. 

Severe rainfall events 
classification 

***last update May 2011. 



Similar results were found on Catalonia’s 2008 
rainfall severe events (Comellas’s master 
thesis; Comellas et al, 2011, NHESS) 

Severe rainfall events 
classification  



 SEVERE HYDRO-
METEOROLOGICAL EVENTS: 

classification features 

1.  Duration 
2.  Extent 
3.  Characteristic spectral length scale 

 morphological analyses 

• Quasi equilibrium / non equilibrium triggering conditions 
• Gross Moist Stability / Saturated fractions 
• 3D microphysical structure of severe storms 

triggering factors / microphysics 



Equilibrium conditions 

The rate of creation of CAPE by 
forcing is balanced by its 

consumption by convection 

Large scale forcing determines the 
statistical properties of convection and 

the spatio-temporal behavior of the 
corresponding severe rainfall events  

Non-Equilibrium conditions 

Triggering condition determines the 
spatio-temporal behavior of the 

corresponding severe rainfall events  

CAPE is build up from large scale 
processes over long timescales and 

removed by sudden triggering of deep 
moist convection 



A convective time scale for equilibrium e 
non-equilibrium conditions 

A convective adjustment 
timescale τC is estimated from 
the rate at which instability 
(measured by CAPE) is being 
removed by convective heating 
(Done et al., 2006) 

τCS ~6 hours 

Equilibrium conditions Non-Equilibrium conditions 



Type I event 

Type II event 

tCS= 6 hrs 

tCS= 6 hrs 

L. Molini, A. Parodi, N. Rebora, G. C. Craig, Classifying severe 
rainfall events over Italy by hydrometeorological and dynamical 
criteria, QJRMS, 137, 654, 148–154, 2011.	




NON 
Equilibrium 

Equilibrium 

τCS= 6 hrs	


Type I events (90%) are largely associated to equilibrium conditions and hence 
more predictable	

Type II events (66%) are characterized by non-equilibrium conditions and 
consequently are expected to be hardly predictable	




•  Saturation Fraction indicates how much saturated a 
column of tropospheric air is in respect to water 
vapor 

•  So far basically employed for tropical convection 
studies 

•  High SF associated to stratiform systems; lower SF 
to convective environments (Raymond et al., 2009) 

Other predictability tools - SF 



•  Over tropical oceans, rain rate is a strong 
nonl inear function of saturation fraction 
(Bretherton et al., 2004): 



•  GMS: some kind of estimation of the ‘convective behavior’ 
in convectively-coupled systems (in other words: the 
relationship between convective forcing and convection 
response) 

•  Numerator: also moist static energy, or equivalent Θ 
(variables conserved in slow moist adiabatic processes) 

•  Denominator: also convective mass flux or divergence of Θ 
flux (a variable representative of the moist convection per 
unit area) 

Other predictability tools - NGMS 



•  Precipitation over warm tropical oceans  Function 
of column RH or SF (Raymond, 2000) 

•  SF and rain 
rate related 
by NGMS 
values! 

•  NGMS in 
multiple 
equilibria 
conditions: 

(From Raymond et  
al., 2009) 

SF & NGMS - Relationship 



•  Can tropical indices such as SF and NGMS be used 
successfully to characterize predictability also in the 
Mediterranean, mid-latitude environment? 

•  If so, how well do they distinguish between type I 
and II severe rainfall events (as τc does)? 

•  According to Raymond and Fuchs (2009), it would 
be expected to find high SF values and NGMS>0 for 
type I (~stratiform) events, and lower SF values 
and NGMS<0 for type II (~convective) events. 

Hypothesis 



•  Work out the spatial mean NGMS and every 
gridpoint SF for each severe rainfall event (59) from 
January 2007 to February 2009. 

•  Atmospheric variables from ECMWF ERA-INTERIM 
reanalyses (spatial res. 0.60º, temporal res. 3h) 

•  And spatially interpolated to the same grid as 
precipitation (spatial res. 7x7 km2, temporal res. 
1h) 



Results - SF 

Type I event Type II event 



Results - SF 



Results - NGMS 



What’s about predictive ability? 

Type I. 14-16 September 2006: d=60 h 

       COSMO-I7                                           OBS 



Type II. 3 July 2006: d=9 h 

OBS	
 RUN 00UTC	


RUN 00UTC	

-24 h	


RUN 00UTC	

-48 h	




Parodi, A. and Emanuel, K., A theory for buoyancy and 
velocity scales in deep moist convection, Journal of 
Atmospheric Sciences 66, 10, 3449-3463, 2009	


Parodi, A., Foufoula-Georgiou, E., and Kerry, A., 
Journal of Geophysical Research, 116, D14119, 12 pp, 
2011 doi:10.1029/2010JD015124.	


Microphysics and severe 
rainfall predictability 
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Radar	


Measured radar 	

observables	


Assigning correct hydrometeor classes  to radar bins 	


h	


i=0,  LD:      Large Drops	
 	
 i=5,  H:        Hail                           	

i=1,  LR:      Light Rain	
 	
 i=6,  G/SH: Graupel/Small Hail	

i=2,  MR:     Medium Rain	
 	
 i=7,  DS:     Dry Snow, 	

i=3,  HR:     Heavy Rain	
 	
 i=8,  WS:    Wet Snow, 	

i=4,  H/R:    Hail/Rain mixture	
 i=9,  IC:      Ice Crystals	


ci	


Unknown hydrometeor classes (ci)	


radar bin	


radar observables plus temperature	


storm	


supervised classification algorithm*** 

***F.S. Marzano, D. Scaranari, M. Montopoli, and G. Vulpiani:	

Supervised Classification and Estimation of Hydrometeors From C-Band Dual-Polarized Radars: A Bayesian Approach, IEEE 
transactions on geoscience and remote sensing, vol. 46, no. 1, January 2008	




M.te Settepani weather radar Temperature from Era-Interim 

ERA-Interim analysis daily products from 1 Jan 1979 
can be accessed by MARS users (expver=1, class=ei). 
Also available are twice daily ten-day forecasts and 
monthly means. The ERA-Interim archive is more 
extensive than that for ERA-40, e.g. the number of 
pressure levels is increased from ERA-40's 23 to 37 
levels and additional cloud parameters are included. 
ERA-Interim products are also publicly available on the 
ECMWF Data Server, at a 1.5° resolution, including 
several products that were not available for ERA-40. 	


Temperature native resolution is 79km and then 
interpolated over a 1-km polar grid centred on radar’s 
site.	




Case Studies 

Type I	


Type II	


s:12UTC d:
20hrs	


s:13UTC d:
36hrs	


s:02UTC d:
46hrs	


12-07-2006	
09-14-2006	
 01-19-2009	


08-16-2006	


s:00UTC d:
8hrs	


09-17-2007	


s:00UTC d:
3hrs	


06-01-2007	


s:04UTC d:
6hrs	




Densities (time series) 

Type II 

2006/09/14 2006/12/07 2009/01/19 
Type I 

2007/06/01 2007/09/16 2006/08/16 

no significant transition during lifetime (mean density timeseries)	




Occurrences 

2006/08/16 2007/06/01 2007/09/16 
Type II 

2006/09/14 2006/12/07 2009/01/19 
Type I 



2006/08/16 2007/06/01 2007/09/16 

Type II: a more developed vertical profile  

2006/12/07 2009/01/19 

Type I: hardly climb over 4-5km of altitude  

2006/09/14 

Vertical Profiles 



Conclusions 

•  Type I events are largely associated with equilibrium 
conditions and thus more predictable 

•  Type II events are characterized by non-equilibrium condition 
and consequently are expected to be hardly predictable 

•  SF against rain rates in the Mediterranean environment fit to 
some extent the observed behavior in the tropics. Further 
studies could confirm its potential use in predictability 

•   Not clear what NGMS<0 means in the Mediterranean... But it 
most probably it is not a good predictability index in our 
environment... 

•  Some useful preliminary insight from microphysics analysis 


