On the Development of Large Surface Vorticity in High-Resolution Supercell Simulations

Johannes Dahl¹, Matthew Parker¹, and Louis Wicker²

¹North Carolina State University, Raleigh, NC ²National Severe Storms Laboratory, Norman, OK

Thanks to ... George Bryan, Paul Markowski, Bob Davies-Jones, Casey Letkewicz, Adam French

Motivation

- Tornadogenesis thought of as three-stage process
 - 1. Midlevel mesocyclogenesis
 - 2. Development of vorticity at the surface
 - 3. Concentration of this vorticity into tornadic strength
- 2nd stage perhaps least understood fundamentally
- Some open questions:
 - Role of low-level shear in tornadogenesis
 - Role of baroclinic and barotropic processes

Simulations: overview

Two full-physics simulations using homogeneous basestate environments

- Del City, OK (20 May 1977): "benchmark" case
- "Frankenstein sounding": wind profile based on Xenia, OH (3 April 1974), idealized thermodynamic profile; referred to as "Xenia case"

Simulations: overview

- Bryan cloud model CM1, version 14
- LFO (Gilmore et al.) single-moment microphysics
- Rain intercept: 1E6 (default: 8E6)
- Free-slip lower BC
- Initialization: warm bubble (1 K, 85% rh, R = 6 km)
- dx = dy = 250 m
- 100 m < dz < 250 m
- dt = 2.0
- Lowest model level: 50 m
- Output every 30 s

Horizontal Momentum Surges (HMS's) Del City

Horizontal Momentum Surges (HMS's) Del City

Surface wind vectors and vertical vorticity (shaded)

Horizontal Momentum Surges (HMS's) Xenia

Surface wind vectors and vertical vorticity (shaded)

Tilting in downdraft and vorticity streamers (Del City)

× (km)

Tilting in downdraft and vorticity streamers (Del City)

SFC zeta (shaded) and velocity vectors; downdraft and tilting at 150 m $$t\!=\!2430$\ s$

Tilting in downdraft and vorticity streamers (Xenia)

SFC zeta (shaded) and velocity vectors; downdraft and tilting at 150 m $t\!=\!2730\,$ s

Tilting in downdraft and vorticity streamers (Xenia)

SFC zeta (shaded) and velocity vectors; downdraft and tilting at 150 m $t\!=\!2730\,$ s

Tilting in downdraft and vorticity streamers (Xenia)

SFC zeta (shaded) and velocity vectors; downdraft and tilting at 150 m $$t\!=\!2910$\ s$

× (km)

Trajectories

Two sets of experiments for each case

- Forward integration
 - Calculated at each model time step dt = 2 s
 - Hard-wired into CM1
 - 1.8 million parcels released in a box *centered* around the developing circulation at the surface
 - 15 x 15 x 3.5 km (Del City)
 - 45 x 30 x 3.5 km (Xenia)
- Backward trajectories
 - history files every 30 s
 - -2^{nd} -order RK scheme (dt = 2 s)
 - Initial conditions taken from forward trajectories

Forward trajectories Del City

Forward trajectories Xenia

Comparison: forward and backward trajectories Del City

Comparison: forward and backward trajectories Xenia

... just as envisioned by Davies-Jones and Brooks (1993)

Barotropic Vorticity

The baroclinic vorticity is simply the difference between the total vorticity and its and barotropic part: BC(r,r) = BT(r,r)

$$\omega_j^{BC}(t;t_0) = \omega_j(t) - \omega_j^{BT}(t;t_0)$$

Define a 3D Cartesia 6-point Stencil around given Parcel at t₀

Jacobian matrix describes how the initial Cartesian coordinates can be mapped onto the new (non-Cartesian grid

Vorticity decomposition Del City (parcel average)

Vorticity decomposition Del City (parcel average)

Conclusions

- Surface rotation is preceded by, and associated with multiple horizontal momentum surges (HMS)
- HMSs and the associated vorticity streamers are a result of by baroclinic processes in the downdraft by the mechanism as proposed by Davies-Jones and Brooks (1993) and Davies-Jones (2000)
- Temporal-interpolation errors strongly affect the trajectories: even high-resolution (dt = 30 s) data are insufficient to obtain accurate results
- All trajectories in the low-level circulation are "downdraft processed"; no trajectories from warm inflow side
 - "occlusion" process = cut-off from warm air?
- Barotropic vorticity in the surface circulation is substantial and contributes to negative vorticity
- Baroclinic vorticity dominates and contributes the positive vertical vorticity

Backup slides ...

Vorticity and buoyant generation (Xenia)

Average vorticity and height vs time

Del City (n = 843)

Xenia (n = 244)

Mean Del City

Mean Xenia

baroclinic mechanism Downdraft reorients vorticity

If the vertical vorticity resulting from tilting is manifest as shear, a jet will result

Tilting in the downdraft:

Vorticity vector tugged away from trajectory (reoriented) because of horizontal solenoidal generation

DJB93 and Davies-Jones (2000)

Additional material ...

Vorticity configuration in the simulation

The twisting term

The horizontal vorticity may be split up into two parts:

$$\omega_h = -\mathbf{k} \times \nabla_h w + \mathbf{k} \times \frac{\partial \mathbf{v}_h}{\partial z}$$

"tangential" or "toroidal" part:

- \rightarrow w is a streamfunction of this part
- \rightarrow Inescapably parallel to w-contours and
- \rightarrow Consequently not "tiltable"

"vertical-shear" part:

- \rightarrow is not necessarily parallel to w-contours
- \rightarrow may be reoriented

Ergo:
$$T = \omega_h \cdot \nabla_h w = \left[-\mathbf{k} \times \nabla_h w + \mathbf{k} \times \frac{\partial \mathbf{v}_h}{\partial z} \right] \cdot \nabla_h w = \mathbf{k} \times \frac{\partial \mathbf{v}_h}{\partial z} \cdot \nabla_h w$$

Tilting term suggests:

 \rightarrow Vorticity vector must cut through w-contours in horizontal plane

 \rightarrow Only vertical-shear component can realize that

How can vortex lines cross wcontours?

- Downdraft: toroidal vortex no matter how unsteady, this toroidal (buoyantly-generated) vorticity cannot be tilted
- DJ00 used a trick to have buoyantly-generated vorticity cross w-contours: primary-secondary-flow approach
 - w-related horizontal vorticity ("toroidal") allowed to cross w-contours (kinematically inconsistent)
- Paul: Somewhat unclear about it (horizontal wind drags vortex line through downdraft, which is kinematically inconsistent)

Requirements for zeta generation at the surface (zeta = 0 initially)

 A non-trivial twisting term in a downdraft does not imply vertical vorticity at the surface: Vorticity vector must cross trajectory in vertical plane

Two requirements have to be fulfilled:

- 1. In-situ generation of horizontal *shear* vorticity required while parcels descend
- This shear vorticity must be non-parallel to wcontours (or twisting term remains zero)

All we need for that: Downdraft in shear:

Idealized downdraft

Example 1 (unsheared):

- 1. Horizontal shear vorticity created during descent
- 2. This vorticity is parallel to w-contours (requirement 2 not me

\rightarrow No vertical vorticity results

Example 2 (sheared):

- 1. Horizontal shear vorticity created during descent
- 3. As will be shown: This vorticity is not parallel to w-contours and thus can be reoriented

Plan view:

Vortex lines now crossing downdraft contours (Paul's configuration)

Vortex lines (more appropriately, vortex polygons)

Vorticity configuration in the simulation

- Vorticity feeding into the circulation due to differential *horizontal* accelerations (splat?) and not *directly* caused by buoyancy gradients
- Low-level shear influencing outflow structure and hence the horizontal shear vorticity

So: Test sensitivity of outflow-generated vorticity to ambient shear using idealized downdrafts (artificial rain source added; in progress)

What about vortex-line arches?

- The simulated hooks are not in downdrafts, so the arches can't be generated around the hook
- Arches may be generated in main downdraft, though
- Hook region: Very complicated and multiple trajectories and vortex lines may, at a given instant, form arches; not necessarily implied that they are formed in situ around the hook

Conclusions 1

- RFD does not seem to instigate low-level rotation but coexist passively at western side of the updraft
 RFD and associated low-level pressure field may help channeling the trajectories
- Main downdraft generates zeta by the same process as proposed by JDB93/DJ00
- No inflow trajectories into tornado cyclone
 - No "occlusion" (= cut-off from warm air): circulation never fed by warm air