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Motivation 
•  Tornadogenesis thought of as three-stage 

process 
1.  Midlevel mesocyclogenesis 
2.  Development of vorticity at the surface 
3.  Concentration of this vorticity into tornadic strength 

•  2nd stage perhaps least understood fundamentally 

•  Some open questions: 
– Role of low-level shear in tornadogenesis 
– Role of baroclinic and barotropic processes 



Simulations: overview 
 Two full-physics simulations using homogeneous base-

state environments 

–  Del City, OK (20 May 1977): “benchmark” case 

–  “Frankenstein sounding”: wind profile based on Xenia, OH (3 
April 1974), idealized thermodynamic profile; referred to as 
“Xenia case” 



•  Bryan cloud model CM1, version 14 
•  LFO (Gilmore et al.) single-moment microphysics 
•  Rain intercept: 1E6 (default: 8E6) 
•  Free-slip lower BC 
•  Initialization: warm bubble (1 K, 85% rh, R = 6 km) 
•  dx = dy = 250 m 
•  100 m < dz < 250 m 
•  dt = 2.0 
•  Lowest model level: 50 m 
•  Output every 30 s 

Simulations: overview 
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Horizontal Momentum Surges 
(HMS’s) Del City 

horizontal momentum surge 
and associated sheet of vorticity 

Surface wind vectors and vertical vorticity (shaded) 
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Tilting in downdraft and vorticity 
streamers (Del City)  

50 m: Vorticity (shaded)  
50 m: Wind vectors 

150 m: Tilting term (thick 
contours) 
150 m: Downdraft (thin, dashed     
 contours) 
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Trajectories 
Two sets of experiments for each case 
•  Forward integration  

– Calculated at each model time step dt = 2 s 
– Hard-wired into CM1 
–  1.8 million parcels released in a box centered around the 

developing  circulation at the surface 
•  15 x 15 x 3.5 km (Del City) 
•  45 x 30 x 3.5 km (Xenia) 

•  Backward trajectories 
–  history files every 30 s 
–  2nd-order RK scheme (dt = 2 s) 
–  Initial conditions taken from forward trajectories 
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Vorticity and buoyant generation  
(Del City) 

blue: trajectory  

Dark blue: baroclinic production (plotted every 30 s) 

red: vorticity vector (plotted every 30 s) 
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Vorticity and buoyant generation  
(Del City) 

Horizontal baroclinic production 
causes inclination of the  
vorticity vector relative to the 
trajectory 
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Vorticity and buoyant generation  
(Del City) 

“New” (baroclinically generated) vorticity frozen 
into the flow: Owing to the inclination, vertical  
vorticity arises as the trajectory bottoms out up 

south 



… just as envisioned by Davies-
Jones and Brooks (1993) 



Barotropic Vorticity 

Define a 3D Cartesian  
6-point Stencil  
around given  
Parcel at t0 

Jacobian matrix describes 
how the initial Cartesian 
coordinates can be mapped  
onto the new (non-Cartesian) 
 grid 

t0 t 
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BT (t;t0) =

ρ(t)
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The baroclinic vorticity is simply the difference between the total vorticity and its and  
barotropic part: 

Jacobian Matrix between initial (Lagrangian)  
 and later (Eulerian) coordinates  

Cauchy formula 



Vorticity decomposition Del City 
 (parcel average) 
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Vorticity decomposition Del City  
(parcel average) 
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Conclusions 
•  Surface rotation is preceded by, and associated with multiple 

horizontal momentum surges (HMS) 

•  HMSs and the associated vorticity streamers are a result of by 
baroclinic processes in the downdraft by the mechanism as proposed 
by Davies-Jones and Brooks (1993) and Davies-Jones (2000)  

•  Temporal-interpolation errors strongly affect the trajectories: even 
high-resolution (dt = 30 s) data are insufficient to obtain accurate 
results 

•  All trajectories in the low-level circulation are “downdraft processed”; 
no trajectories from warm inflow side 
–  “occlusion” process = cut-off from warm air? 

•  Barotropic vorticity in the surface circulation is substantial and 
contributes to negative vorticity 

•  Baroclinic  vorticity dominates and contributes the positive vertical 
vorticity 





Backup slides … 
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Average vorticity and height vs time 
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 baroclinic mechanism 
    Downdraft reorients vorticity  

horizontal vorticity 
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If the vertical vorticity resulting from tilting 
is manifest as shear, a jet will result 



Tilting in the downdraft: 

DJB93 and Davies-Jones (2000) 

Barotropic (frozen) 
Barocl. generation 
Resulting vorticity 

Vorticity vector tugged away from trajectory (reoriented) 
because of horizontal solenoidal generation 



Additional material … 





Vorticity configuration in the simulation 



The twisting term 

“tangential” or “toroidal” part:  
   w is a streamfunction of this part 
   Inescapably parallel to w-contours and 
   Consequently not “tiltable” 

Tilting term suggests:  
  Vorticity vector must cut through w-contours in horizontal plane 
  Only vertical-shear component can realize that  

€ 

ωh = −k ×∇hw + k × ∂vh
∂z

€ 

T =ωh ⋅ ∇hw = −k ×∇hw + k × ∂vh
∂z
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⎣ ⎢ 
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⋅ ∇hw ≡ k × ∂vh

∂z
⋅ ∇hw

The horizontal vorticity may be split up into 
two parts: 

“vertical-shear” part:  
   is not necessarily parallel to w-contours 
   may be reoriented 

Ergo: 



How can vortex lines cross w-
contours? 

•  Downdraft: toroidal vortex – no matter how 
unsteady, this toroidal (buoyantly-generated) 
vorticity cannot be tilted 

•  DJ00 used a trick to have buoyantly-generated 
vorticity cross w-contours: primary-secondary-flow 
approach 
– w-related horizontal vorticity (“toroidal”) allowed to 

cross w-contours (kinematically inconsistent) 

•  Paul: Somewhat unclear about it (horizontal wind 
drags vortex line through downdraft, which is 
kinematically inconsistent) 



Requirements for zeta generation 
at the surface (zeta = 0 initially) 

•  A non-trivial twisting term in a downdraft does not 
imply vertical vorticity at the surface: 

 Vorticity vector must cross trajectory in vertical 
plane  



Idealized downdraft 



Example 1 (unsheared):  
1.  Horizontal shear vorticity created during descent 
2.  This vorticity is parallel to w-contours (requirement 2 not met) 

 No vertical vorticity results 

Buoyantly-generated vortex line 

. 

x 

x 
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strong, diverging outflow 

weak flow aloft 

Vertical wind shear 

Example 2 (sheared):  
1.  Horizontal shear vorticity created during descent 
3.  As will be shown: This vorticity is not parallel to w-contours 
      and thus can be reoriented 



shear 

weak flow aloft 
strong, diverging outflow 

shear vectors 

shear-vorticity vector  
(normal to the shear) 

Plan view: 

downdraft contour 



shear 

Vortex lines (more appropriately, vortex polygons) 

Vortex lines now crossing downdraft contours  
(Paul’s configuration) 

w = min 

T < 0 T > 0 



Vorticity configuration in the simulation 



•  Vorticity feeding into the circulation due to 
differential horizontal  accelerations (splat?) 
and not directly caused by buoyancy 
gradients 

•  Low-level shear influencing outflow structure 
and hence the horizontal shear vorticity 

So: Test sensitivity of outflow-generated 
vorticity to ambient shear using idealized 
downdrafts (artificial rain source added; in 
progress) 



What about vortex-line arches? 

•  The simulated hooks are not in downdrafts, 
so the arches can’t be generated around the 
hook 

•  Arches may be generated in main downdraft, 
though 

•  Hook region: Very complicated and multiple 
trajectories and vortex lines may, at a given 
instant, form arches; not necessarily implied 
that they are formed in situ around the hook 



Conclusions 1 
•  RFD does not seem to instigate low-level rotation 

but coexist passively at western side of the updraft 
– RFD and associated low-level pressure field may help 

channeling the trajectories 

•  Main downdraft generates zeta by the same 
process as proposed by JDB93/DJ00 

•  No inflow trajectories into tornado cyclone 
– No “occlusion” (= cut-off from warm air): circulation 

never fed by warm air 


