

Numerical simulation of low-level misocyclones associated with winter convective cells over the Japan Sea area

Ken-ichi Shimose^{1*}, Syugo Hayashi², Wataru Mashiko², Kenichi Kusunoki², Kotaro Bessho³, Shunsuke Hoshino², Hanako Inoue², Masahisa Nakazato³, Hiroshi Yamauchi², Keiji Araki⁴, Hiroyuki Morishima⁵, Keiji Adachi⁵

1: Alpha-denshi / MRI, 2: MRI, 3: JMA, 4: Railway Technical Research Institute, 5: East Japan Railway Company

Railroad Network around Tokyo

2

Railroad Network in Japan

Background of our project

- Strong and gusty winds sometimes affect the safety operation of trains and cause delay or shutdown of trains.
- Since anemometers discretely cover on the railroads, small-scale but strong gusty winds are difficult to detect with the present system.

Japan Sea area

Background of the Japan Sea area

- On the coast of the Sea of Japan, significantly strong winds associated with the winter monsoon cold serge.
- Because of the cold serge from the continent (~ -5 - 10°C) and relatively warm SST (~ 15°C), the low-level atmosphere is unstable over the Sea of Japan.

This situation can help to develop convective cells accompanied by gusts.

Shonai area railroad weather project

- Final Goal
 - Development of an automatic strong gust detection system for railroad
 - Decision to warn is generally based upon information from a single-Doppler radar
 - Ongoing

 Investigation of the fine-scale structure of winter wind gust dynamics and kinetics around the Shonai area

Overview of the field experiment

Findings so far

- Observed gusts are mainly associated with low-level misocyclones.
- Misocyclones are generated over the sea and some of them land.

 Observations capture aspects of gusts and their parent storms. → It is difficult to catch 3D structure of the storm.

Solution

- Numerical approach can compensate the weak point of observation (e.g. nearsurface information).
 - Results can be used to the effective improvement of the gust detection system.
- On this talk, one case study is introduced.

Case Overview

- 1711JST, 11 December 2008
 JST: Japan Standard Time (UTC + 9 hours)
- Max. wind speed: 26.8 m s⁻¹
- Associated with the cold front
- No damage

Case Overview of 11 Dec 2008

- Convective cells were initiated along the convergence line over the sea.
- Misocyclones were embedded in the surface convergence line associated with the cold front.
- Misocyclones were distributed at the intervals of 2-4 km and some of them landed.

Model Descriptions

- Model: JMA-NHM (Saito et al., 2006)
- I.C., B.C.: MANAL (an objective analysis made by JMA and horizontal resolution is 10 km)

Microphysics: 2-moment 4-ice scheme

Numerical Results (NHM250 m)

several strong vertical vorticity region are developed from surface to upward.

Red: Vertical Vorticity (>0.02 /s) Green: Updraft (>5 m/s) Gray: Condensate (>0.2 g/kg) Surface Color:

17

Divergence

Surface Contour: Terrain

4 km

50 km

^{05/10/2011} Evolution of vertical vorticity field @ near surface

a number of strong vertical vorticity parts along the vortex sheet associated with cold front

These strong vertical voriticity parts are equivalent to observed misocyclones.

^{05/10/2011} Vertical vorticity @ near surface (1534JST)

19

Energy analysis

• To understand the generation of these misocyclones, the energetics along the front are investigated.

$$\frac{\partial \overline{K}_{e}}{\partial t} = -\overline{v'_{i}u'} \frac{\partial \overline{v}_{i}}{\partial x} - \overline{v'_{i}w'} \frac{\partial \overline{v}_{i}}{\partial z} + \overline{B'w'} - \left(\overline{u}\frac{\partial}{\partial x} + \overline{w}\frac{\partial}{\partial z}\right)\overline{K}_{e}$$
$$-C_{p}\theta_{v0}\frac{\partial}{\partial x}\left(\overline{\pi'_{1}u'}\right) - C_{p}\theta_{v0}\frac{\partial}{\partial z}\left(\overline{\pi'_{1}w'}\right) - C_{p}\theta_{v0}\overline{\pi'_{1}\nabla\cdot v'}$$
$$-\overline{v'\cdot\nabla K_{e}} + \overline{M'_{F}v'} - \text{dissipation terms}$$
$$\text{ECSS @ Palma de Mallorca}$$

GrADS 2.0.a9

Evolution of vertical vorticity field (after the transformation of coordinate system)

wavelength becomes longer as passage of time.

Evolution of conversion terms

Vorticity analysis

- To investigate the development of the misocyclone, vorticity analysis are executed.
- Each term of the vorticity equation is calculated in a moving domain with the volume of 3 km × 3 km in the horizontal and 600 m in the vertical surrounding the center of the misocyclone.
- Calculation is executed each 10 seconds

Evolution of traced misocyclone

27

Summary

- The simulated misocyclone is initiated near surface, where the horizontal convergence is significantly strong.
- Generation of low-level misocyclone is associated with horizontal shear instability along the cold front.
- Development of low-level misocyclone is associated with strong stretching and horizontal advection of vertical vorticity.

For gust detection system

 It is necessary for the radar scan to monitor the lower layer (below 1 km height) frequently.

Trigger

- Fatal Railroad Accident @ Shonai area
 - 25th Dec 2005 (winter)
 - 5 killed and 32 injured
 - caused by the strong gust (~50 m s⁻¹) assoc. w/ the convective cell

2-D wind field from surface observation network

Vertical cross section along A-B (color: EPT, contour: horizontal divergence)

