

CUANARD

IMGI Institute of Meteorology and Geophysics Innsbruck

SEVERE HAIL SIZE DISCRIMINATION USING DUAL-POLARIZED WEATHER RADAR DATA. A DUAL-WAVELENGTH COMPARISON BETWEEN "C" AND "S" BAND.

6th European Conference on Severe Storms (ECSS 2011) 3 - 7 October 2011, Palma de Mallorca, Balearic Islands, Spain

Rudolf Kaltenboeck, Alexander Ryzhkov

SAFETY IS IN THE AIR

METEOROLOGIE

Outline

- Motivation
- Data
- Methodology
- Results
 - hail backscattering effects
 - average profiles within hail bearing storm

austro

CONTRO

- Attenuation differential phase
- Conclusion Outlook

Motivation

Motivation

new installed dual polarized weather radars (C-band) in Austria

Motivation Operational European Weather Radars OPERA database:

Motivation Operational European Weather Radars OPERA database:

Aim

Large Hail D > 2.5 cm Giant Hail D > 5 cm

Data SPC hail reports for Okalhoma, 2/2009-4/2011

Data: OU-PRIME C-band

Data: KOUN S-band

- polarimetric prototype of the WSR-88D
- range bin: 250 m
- range: 300 km
- elevavation: 0.5-19.5° (#14)
- bw: 1°
- distance: 6.8 km

Data: Dual Polarized Moments used in this study

- Differential Reflectivity Z_{DR}
 - depends on the particle size, shape,
 orientation, density, and water content
- Cross-Correlation coefficient ρ_{hv}
 - correlation between horizontally and vertically polarized weather signals
 - decrease indicate variety of HM, tumbling, mixture water / ice, irregular shape, resonance size, rapid shape deformation, large hail

Bringi+Chandrasekar, 2001

- Differential Phase as quality parameter
 - specific (propagation) + backscatter diff. phase

Maximum Hail Size: Single Pol

- Max-Reflectivity or VIL in relation to freezing level height
- Echo-Top
- Probability of hail ... maximal expected hail size (severe hail index deptends on temperature-height weighting function and kinetic energy of hail)
- (e.g. Waldvogel, 1979; Donavan and Jungbluth, 2007; Edwards and Thompson, 1998; Witt et al., 1998)

Maximum Hail Size: Dual Pol

- polarimetric characteristics of hailstones depend on their size, shape, falling behavior, and are strongly affected by the degree of melting and the probing radar wavelength.
- better quality of hail detection (FAR reduced)
- Iocation of hail in the storm
 - including its height above ground
- S-band
 - hail differential reflectivity HDR (e.g. Aydin et al., 1986, Depue et al., 2007)
 - HCA (e.g. Park et al. 2009) no hail size
- S/C/(X)-band:
 - melting hail polarimetric characteristics of large hail

(e.g. Ryzhkov et al., 2009, Borowska et al., 2010; Kumjian et al., 2010, Picca and Ryzhkov, 2011, Tabery et al., 2009)

C-band: resonance effects

Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing

C-band: resonance effects

 Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing

C-band: resonance effects

 Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing

C-band: resonance effects

Hail-diameter: 10cm S-band – wet hail below freezing level

Hail-diameter: 10cm C-band – wet hail below freezing level

Hail-diameter: 10cm C-band – dry hail aloft

Hail-diameter: 10cm S-band – dry hail aloft

Cross section hail size 2,5 cm

C-band

S-band

Weak Convection – thermal plumes C-band

Dry hail aloft

HAIL BACKSCATTERING EFFECTS WHICH AFFECT DUAL POL MOMENTS AND CORRESPONDING VERTICAL STRUCTURE

austro

TBSS C-band three scatter signature signal

LOW RhoHV due to ZDR gradient, SNR C-band

ZDR Column + Side-lobe effects C-band

vertical profile: hail: 2 - 10cm Z ≥ 55dBZ

vertical profile: hail: 2 - 10cm Z ≥ 55dBZ

$\Phi_{\rm DP}$ hail size dependence for C-band nonmonotonic radial dependences of $\Phi_{\rm DP}$

below freezing level

nonmonotonic radial dependencies of $\Phi_{\rm DP}$

nonmonotonic radial dependencies of Φ_{DP}

nonmonotonic radial dependencies of $\Phi_{\rm DP}$

Conclusion

Comparison of Z_{DR} and ρ_{hv} changes below wet bulb freezing level height for two hail classes:

		MEDIAN		Standard-Deviation	
		Large hail	Giant hail	Large hail	Giant hail
Z _{DR}	C band	+4dBZ	+7dBZ	1.4dBZ	2.2dBZ
Z _{DR}	S band	+1dBZ	+1.5dBZ	1.1 dBZ	0.8dBZ
ρ _{hv}	C band	0.91	0.84	0.04	0.09
ρ _{hv}	S band	0.94	0.92	0.02	0.06

Comparison of ρ_{hv} at -10°C wet bulb temperature height for two hail classes:

	ρ _{hv}	MEDIAN		Standard-Deviation			
		Large hail	Giant hail	Large hail	Giant hail		
	C band	0.95	0.82	0.04	0.09		
	S band	0.94	0.92	0.02	0.06		

Conclusion

- Iocation of hail within the storm
- vertical profiles of polarisation moments efficiently utilized for hail size discrimination
- C-band hail features are much more pronounced
- below freezing level:
 - strong increase in Z_{DR}
 - strong decrease in ρ_{hv}
- hail generation at -10 °C
 - strong decrease in ρ_{hv}

Ongoing Work

- extend dataset
- hail cases from Austria
 - C-band
 - additional small hail reports (D < 2cm)
- verification
- attenuation C band + nonmonotonic radial dependcies of $\Phi_{\rm DP}$
- trend analyses -> Nowcasting

Thank you for your attention!

rudolf.kaltenboeck@austrocontrol.at