

European Conference on Severe Storms Palma de Mallorca, Spain, 3-7 October 2011

Variants of meteorological conditions during large-scale rain floods

Marek Kašpar ⁽¹⁾, Miloslav Müller ^(1,2) (1) Institute of Atmospheric Physics AS CR (2) Charles University in Prague, Faculty of Science

Selection of flood events

Assumption

Rain floods on major rivers in Central Europe are caused by widespread and relatively intense rainfalls which often last several days. *Müller et al., NHESS, 2009, 441-450*

Rainfalls are usually linked with circulation conditions in synoptic scale. *Müller and Kaspar, . J. Phys. Chem. Earth., 2010, 484-490*

Selection criterion

- Sum of the products of the areas of affected catchments (>100 km²) and the return periods of respective peak flows
- □ Lower threshold value of the criterion was applied.
- □ 41 events were selected in the period 1951-2010.
- □ Flood events vs. rain events Kaspar and Müller, NHESS, 2008, 1359-1367
 - both sets almost identiacal;
 - rankings of their magnitudes different.

Methods

Anomalies in (thermo)dynamic variables

- □ Anomaly
 - Cavazos, J. of Climate, 1999, 1506-1523
- area of climatologically low or high values
- Meso-alpha scale anomalies
 Müller et al., Atmos. Research, 2009, 308-317
- typical of widespread and steady rains;
- in specific regions and stages of the events.

Divisive clustering of the events

- □ Criterion of similarity
- magnitude (mean **P**) of typical anomalies
- PC analysis
- reduction of considered anomalies (40/238)
- Optimization of clustering
- reduction of considered PCs using cophenet & inconsistency coeffs. & scree test (8/40)

P: probability of not exceeding

30° W – 40° E

Data

- NCEP/NCAR reanalysis, 1951-2010, Europe & N. Atlantic, resolution 2.5°.

Thermobaric conditions

Π

Variants of conditions

Thermobaric conditions

Π

Variants of conditions

Thermobaric conditions

Π

Variants of conditions

Thermobaric conditions

Thermobaric conditions

IV

Thermobaric conditions

Conclusions

- □ Selection of flood events
 - 41 events 1951-2010;
 - criterion: area of affected catchments & return period of peak flows.

□ Variants of meteorological conditions

- divisive clustering of the events according to the magnitude of meso-a anomalies;
- 4 consistent clusters of 2nd level.
- 2 cyclonic variants (**I** + **II**):

Anomalies connected with strong baroclinity and conditions favorable for production and orographic enhancement of precipitation.

1 transitional variant (frontal zone & cyclone, **III**) :

Initially, anomalies connected with arriving of warm and moist air.

1 non-cyclonic variant (**IV**) :

Anomalies connected with moist air at lower levels.

- Cyclonic variants (especially **I**) are the most noticeable and dangerous in respect of the magnitude of anomalies, floods and affected area.

Conclusions

□ Selection of flood events

- 41 events 1951-2010;
- criterion: area of affected catchments & return period of peak flows.

□ Variants of meteorological conditions

- divisive clustering of the events according to the magnitude of meso-a anomalies;
- 4 consistent clusters of 2nd level.

Possible outlook

- application of a fuzzy clustering approach;
- confirmation of applicability in other regions;
 - better comparison of various regions in view of circulation causes;
 - detection of past flood events in case of lacking direct data

Thank you !

References

- Cavazos, T., 1999: Large-Scale Circulation Anomalies Conducive to Extreme Precipitation Events and Derivation of Daily Rainfall in Northeastern Mexico and Southeastern Texas. J Climate, 12, 1506–1523.
- Kaspar, M., Müller, M., 2008: Selection of historic heavy large-scale rainfall events in the Czech Republic. NHESS, 8, 1359–1367.
- Müller, M., Kaspar, M., Rezacova, D., Sokol, Z., 2009: Extremeness of meteorological variables as an indicator of extreme precipitation events. Atmos. Research 92, 308–317.
- Müller, M., Kašpar, M., Matschullat, J., 2009: Heavy rains and extreme rainfall-runoff events in Central Europe from 1951 to 2002. NHESS 9, 441–450.
- Müller, M., Kaspar, M., 2010: Quantitative aspect in circulation type classifications
 An example based on evaluation of moisture flux anomalies. J. Phys. Chem. Earth., 484–490.

See also posters A5/151 describing some variants by moisture fluxes and Hovmöller diagrams across Central European catchments and A6/231 containing comparative study of 2010 rain floods.