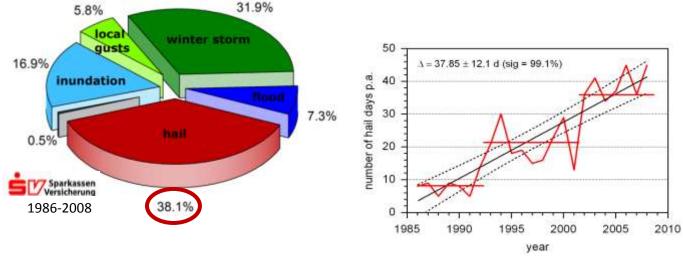


Trend analysis of meteorological parameter relevant to hail from soundings and reanalysis data

Susanna Mohr and Michael Kunz

Project: HARIS-CC "Hail Risk and Climate Change"

CENTER FOR DISASTER MANAGEMENT AND RISK REDUCTION TECHNOLOGY (CEDIM)


KIT – University of the State of Baden-Württemberg and National Laboratory of the Helmholtz Association

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences

Motivation

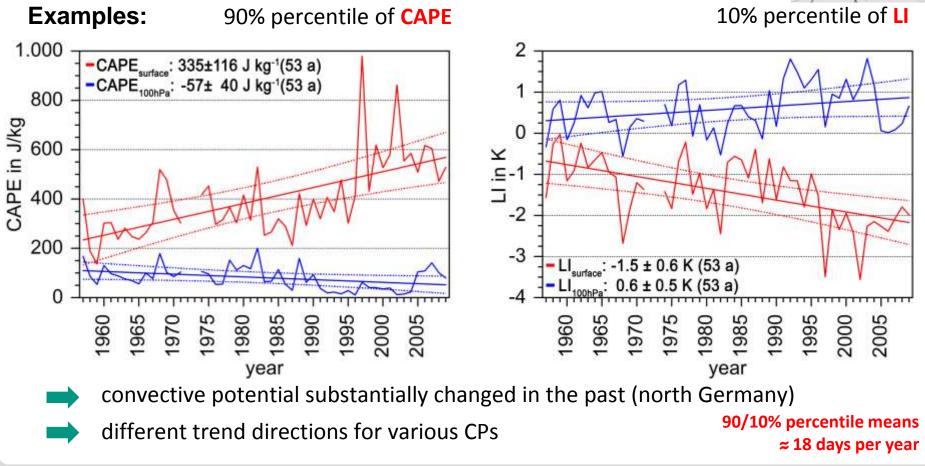
Problem: hail usually a local-scale phenomena

- Insurance data of buildings for Baden-Württemberg (southwest of Germany) show:
- most of the damage to buildings by natural hazards are caused by hail
- Significant increase of hail damage days

2

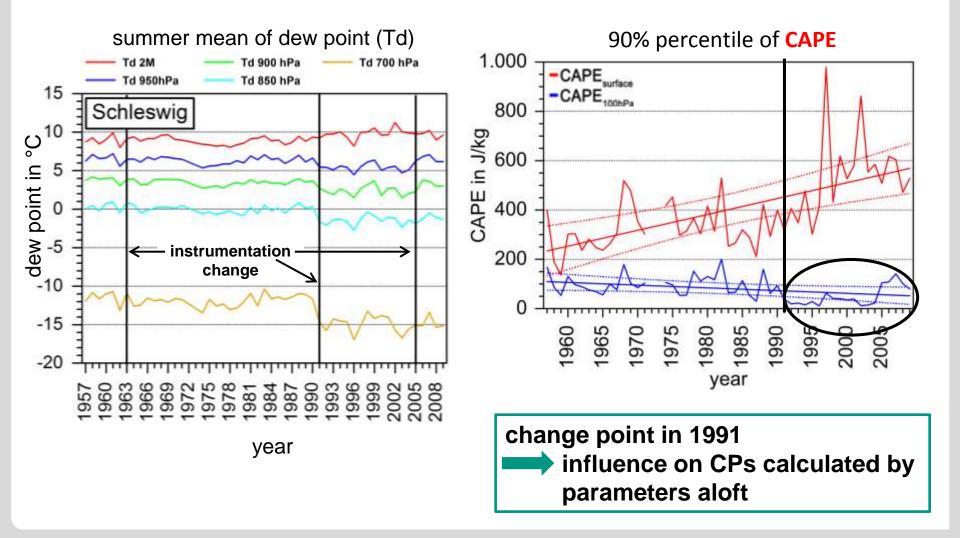
HARIS-CC "HAIL RISK AND CLIMATE CHANGE"

Institute for M


Scientific questions and objectives?

- Which meteorological parameters describe hail events best? CAPE, Lifted Index (LI), Δθ_E, PII, DCI, KO, K_{mod} (see Kunz, 2007; Mohr and Kunz, 2011)
- 2. How did the convective potential of the atmosphere change over past decades (Germany and Europe)?
- 3. Can RCMs reproduce the convective potential? Which trends can be derived from reanalysis data?
- 4. How will the thunderstorm potential change in the future?

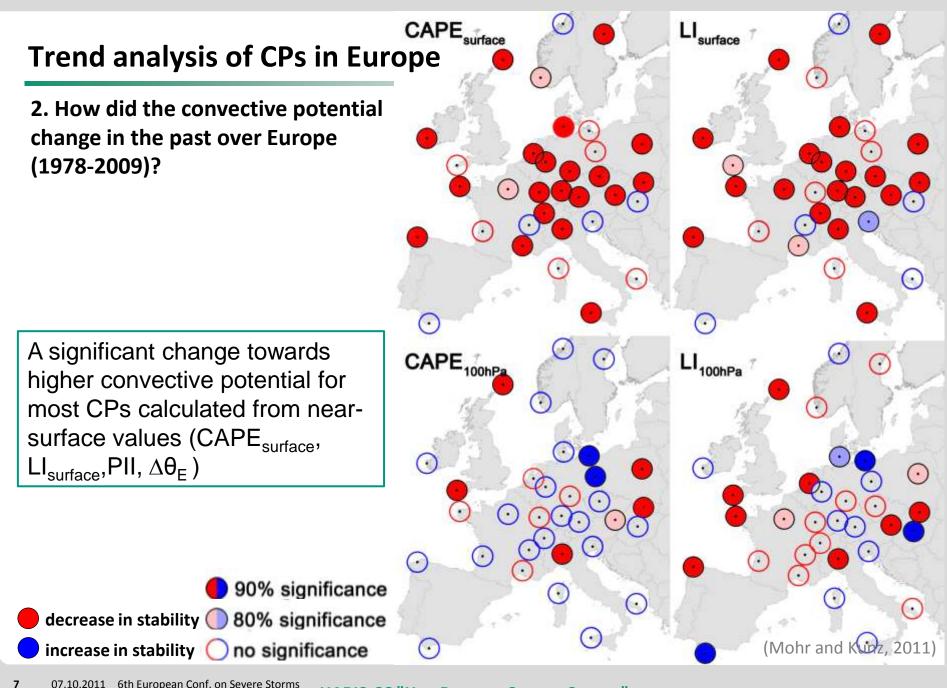
Trend analysis of CPs in Germany (1957-2009):


2. How did convective parameters/indices (CPs) of the atmosphere change in the past at the station of Schleswig (summer half year, 12 UTC)?

Are the time series homogenous?

5 07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)

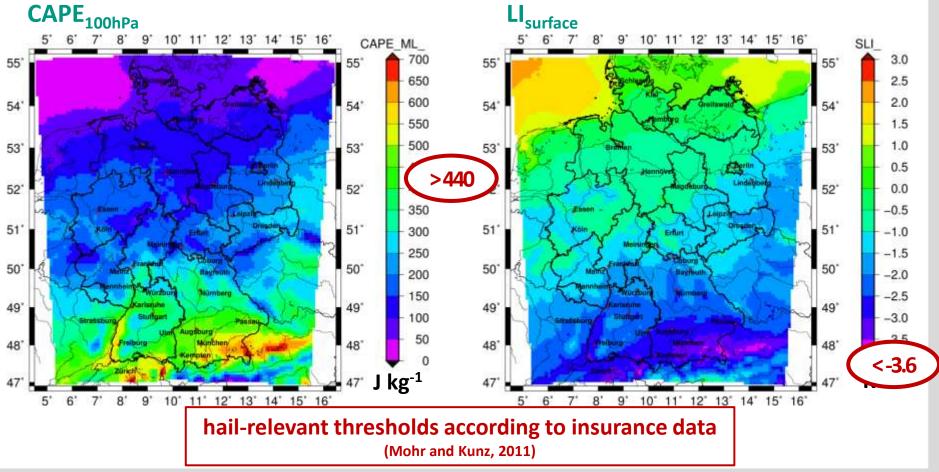
Trend analysis of CPs in Germany


How robust are the trends to temporal shifts of the time series?

6 07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)

HARIS-CC "HAIL RISK AND CLIMATE CHANGE"

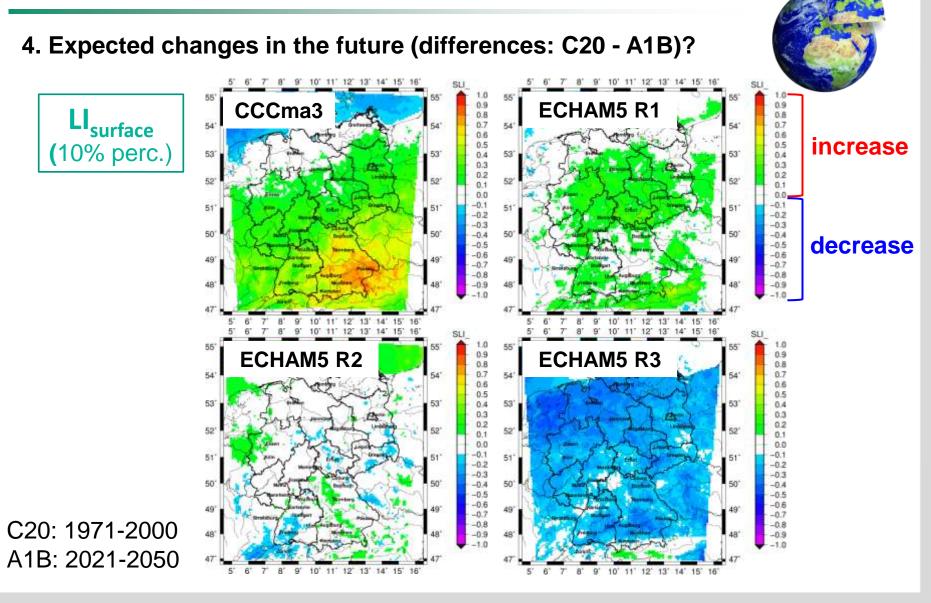
Institute for Meteorology and Climate Research (IMK-TRO)



07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)

Reanalysis data from RCM (CCLM-ERA40, 7 km)

Average of 90/10%-percentiles, 1971-2000


8 07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)

3. Which trends are derived from reanalysis data? Trends of the 90/10% percentiles (1978-2000) **CAPE**_{100hPa} surface 10 11 12 13 14 15 16 13 14 15 16 CAPE ML SLI 0.0 -0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.851° -0.9-1.050° Bayfeu -1.1 -1.2-1.31.4 -1.5J kg⁻¹ К 14' 15' 16' 14 15 16 primarily a positive trend (but with low statistical significance)

07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu) HARIS-CC "HA

Trend analysis (CCLM-ERA40, 7 km)

Outlook...

10 07.10.2011 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)

Conclusions

• Changes in the instrumentation are a crucial issue for trend analysis.

Particularly convective parameters that relay on moisture at higher levels affected.

- Convective parameters calculated from near-surface temp/humidity in general show an increase in the thunderstorm potential over the last 30 years in Germany.
- Most parts of Europe show an increase in the thunderstorm potential.
- The average 90% percentiles of the convective parameters of reanalysis data exceed the threshold for hail potential in south Germany.
- Reanalysis data show an increase in the convective potential for severe events (low statistical significance).
- Reason for the increase: increase of moisture at lower levels **higher convective energy**

Thanks for your attention! Questions?

Mohr, S. and M. Kunz, 2011:

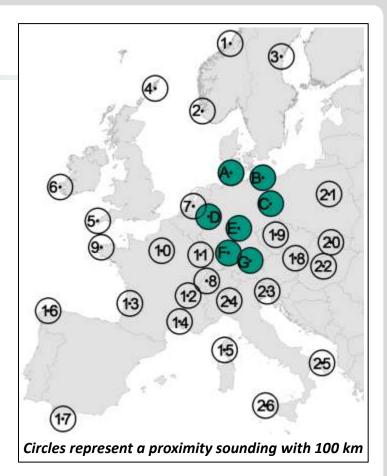
Trend analysis of convective indices relevant for hail events in Germany. *Atmos. Res.* In preparation.

Kunz, M., Sander, J., Kottmeier, C., 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. *Int. J. Climatol.* **29 (15)**, 2283–2297.

Kunz, M., 2007: The skill of convective parameters and indices to predict isolated and severe thunderstorms. *Nat. Hazards Earth Syst. Sci.* **7**, 327–342.

Data sets (12 UTC, summer half year):

Soundings:


- Germany (7 stations, A-G)
 - 1957-2009: Schleswig and Stuttgart 53 years
 - 1978-2009: five other station 32 years
- Europe (1-26)

- 1978-2009 32 years

NCDC

Reanalysis data:

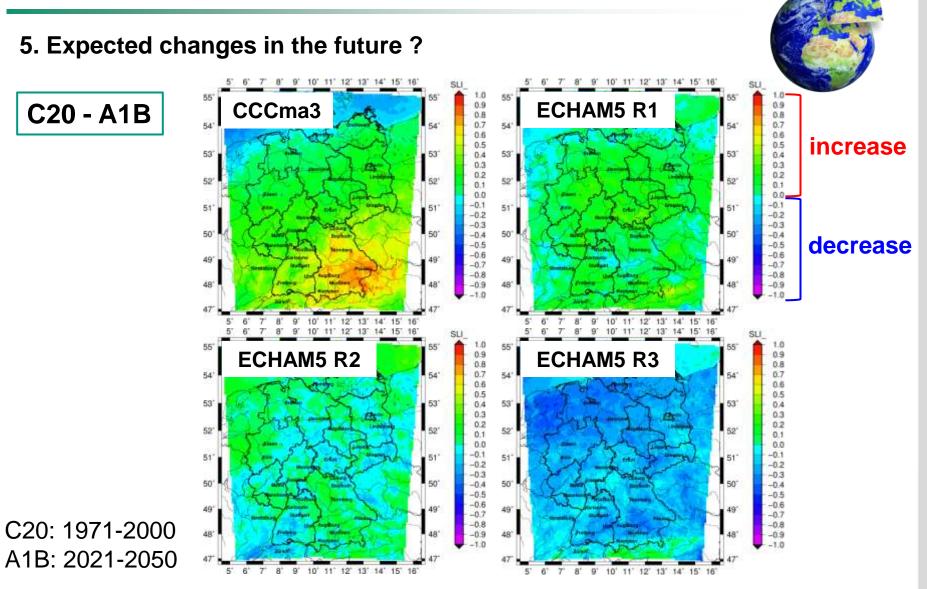
- CCLM-ERA40 (IMK-TRO, KIT, Germany):
 - COSMO_CLM_4.8_clm7, double nesting
 - driven with ERA40 (ECMWF)
 - high resolution of 0.0625° (~7 km)
 - area: Germany
 - period: 1971-2000

Trend analysis of CPs in Germany (1978-2009):

2. How did the convective potential change in the last 32 years in Germany?

Index 90% percentile (i.e.18 days)	Schleswig	Greifswald	Lindenberg	Essen	Meiningen	Stuttgart	Munich
CAPE _{surface}		X	X				
CAPE _{100hPa}	X			Χ	X	X	X
LI _{surface}		X	X				
LI _{100hPa}	X		X	X	X	X	X
Showalter			X	X	X	X	X
KO-Index	X			X			X
DCI _{surface}	X	X					
DCI _{100hPa}	X		X	X	X	Χ	X
K _{mod}	X	X		X		X	X
Pot.Inst.Index	X			X		X	
$\Delta \theta_{\rm E}$			X				
SWISS12	X	X	X	X		Χ	

(Mohr and Kunz, 2011)


meteorological parameter	Schleswig	Greifswald	Lindenberg	Essen	Meiningen	Stuttgart	Munich	5
temp _{surface} to 500 hPa		X						
moisture _{surface}			X					
moisture950hPa to 700hPa		X			X	X	X	
moisture _{500hPa}								

Linder

decrease in stability *increase in stability* 90% significance 80% significance no significance calculation from near-surface values calculation with layers aloft XXX

Outlook...

 16
 07.10.2011
 6th European Conf. on Severe Storms Susanna Mohr (mohr@kit.edu)