

The effects of low-level shear on simulated supercells

George Bryan

National Center for Atmospheric Research, USA

Leigh Orf Central Michigan University, USA

6th European Conference on Severe Storms 5 October 2011

NCAR is sponsored by the National Science Foundation

Motivation

• Several observations-based studies have found a correlation between significant tornadoes and low-level vertical wind shear:

0-1 km wind-vector difference (Δu) (m/s):

Doswell and Evans (2003, Atmos Res)

Hodograph shape in low levels: a "bend," or "kink," or "sickle shape," or "L-shape" is often seen in low levels (200 – 1000 m AGL)

Figure 1: KOUN 0000 UTC 4 May 1999 hodograph. Axis units are in m s⁻¹.

Esterheld and Giuliano (2008, EJSSM)

See also: Wicker (1996, SLS Conf., 3.3) Miller (2006, SLS Conf., 3.1) Kis and Straka (2010, SLS Conf., P6.9)

Motivation

- Use idealized simulations to understand effects of low-level shear on supercells
- A simple hodograph:
 - Two straight-line segments (ω_h = constant)
 - Specified angle between low-level and upper-level segments

Methodology

- Numerical model: CM1 (http://www.mmm.ucar.edu/people/bryan/cm1)
- $-\Delta x$, $\Delta y = 500$ m
- Δz varies from 20 m near surface to 500 m at z = 20 km
- Standard idealized model configuration:
 - Horizontally homogeneous environment
 - Warm thermal initialization
- No surface fluxes, no surface drag, no radiation
 - (ensures the specified environment does not change)
- Morrison (2009) double-moment microphysics scheme
 - increased threshold in raindrop breakup parameterization
 - see Morrison and Milbrandt (April 2011, MWR)
 - yields larger raindrops, less evaporation
 - estimated reflectivity obtained by integration of drop size distributions, assuming 10-cm wavelength radar (Bryan and Morrison, 2011, MWR in press)

Methodology

- Numerical model: CM1 (http://www.mmm.ucar.edu/people/bryan/cm1)
- $-\Delta x$, $\Delta y = 500 \text{ m}$
- Δz varies from 20 m near surface to 500 m at z = 20 km
- Standard idealized model configuration:
 - Horizontally homogeneous environment
 - Warm thermal initialization
- No surface fluxes, no surface drag, no radiation
 - (ensures the specified environment does not change)
- Morrison (2009) double-moment microphysics scheme
 - increased threshold in raindrop breakup parameterization
 - see Morrison and Milbrandt (April 2011, MWR)
 - yields larger raindrops, less evaporation
 - estimated reflectivity obtained by integration of drop size distributions, assuming 10-cm wavelength radar (Bryan and Morrison, 2011, MWR in press)

Hourly soundings from Shawnee before storms arrived

Radar image 15 minutes after last sounding launch from Shawnee, OK (45 minutes before tornado)

sounding site

CIN: 60 J kg⁻¹

CIN: 60 J kg⁻¹

CIN: 3 J kg⁻¹

Initial conditions for idealized model simulations:

Initial Wind Profiles:

 α is the angle between 0-1 and 1-8 km shear vectors:

Maximum Circulation at z = 1 km (60-90 min average)

Initial Wind Profiles:

Storm motion from model simulations:

Initial Wind Profiles:

Using storm motion from model simulations:

0-1 km SRH = 112 m² s⁻² 0-6 km ΔU = 31 m s⁻¹

0-1 km SRH = 126 m² s⁻² 0-6 km ΔU = 28 m s⁻¹

0-1 km SRH = 116 m² s⁻² 0-6 km ΔU = 24 m s⁻¹

 $\begin{array}{c} \mbox{Magnitude of storm-relative winds at surface:} \\ 16\mbox{ m s}^{-1} & 14\mbox{ m s}^{-1} & 11\mbox{ m s}^{-1} \end{array}$

For the "L-shaped" hodograph:

--> Parcels have more residence time along forward flank

For the "L-shaped" hodograph:

- --> Parcels have more residence time along forward flank
- --> "traverse through more storm" (K. Kosiba, 4 October 2011)

From horizontal vorticity equation (Klemp and Rotunno 1983, JAS)

$$\Delta\omega_s \approx \frac{g}{\theta_0} \frac{\partial\theta}{\partial n} \frac{\Delta s}{v_s}$$

$$\partial \theta / \partial n \approx 1 \text{ K per 5 km}$$

 $\Delta s \approx 20 \text{ km}$ --> $\Delta \omega_s \approx 0.015 \text{ s}^{-1}$
 $v_s = 10 \text{ m s}^{-1}$

Shading: potential temperature perturbation (K) at z = 10 mVectors: storm-relative horizontal velocity at z = 10 mContours: (positive) vertical vorticity (every 0.005 s⁻¹) at 1 km AGL

Shading: potential temperature perturbation (K) at z = 10 m Vectors: storm-relative horizontal velocity at z = 10 m

--> Contours: reflectivity (dBZ) at z = 10 m

Shading: potential temperature perturbation (K) at z = 10 mVectors: storm-relative horizontal velocity at z = 10 mBlack Contours: reflectivity (dBZ) at z = 10 m

--> Green Contours: (positive) vertical vorticity (every 0.005 s⁻¹) at z = 1 km

Shading: potential temperature perturbation (K) at z = 10 m

--> Vectors: horizontal vorticity at z = 100 m

--> Contours: (positive) vertical vorticity (every 0.005 s⁻¹) at 1 km AGL

--> Shading: cold-pool depth (*h*) (km)

--> Vectors: 0-1km shear vectors

Contours: (positive) vertical vorticity (every 0.005 s⁻¹) at 1 km AGL

Contours: log₁₀(N_{0r}) (intercept parameter in microphysics scheme)

Contours: evaporation rate (g kg⁻¹ h⁻¹)

Summary

- <u>Magnitude</u> of low-level shear vector and <u>angle</u> of low-level shear vector (relative to mid-level shear vector) affects lowlevel rotation in simulated supercells
 - roughly 90° angle produces strongest low-level circulation
- Reason (preliminary):

Low-level storm-relative flow is weaker

- --> longer residence time in forward-flank region
- --> greater net baroclinic generation of vorticity
- Other possible effects:
 - Shear/updraft and shear/downdraft interaction
 - Cold-pool/shear interaction