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I.INTRODUCTION

Issuing warnings on severe convective weather is
nowadays an essential part of operational weathices.
Thanks to the development of real time accurate
observations and numerical weather prediction, atper
forecasters have access to numerous automatic esever
weather nowcasting and warning tools that facditttieir
work. However, these methods do not include reporte
damages that have already taken place due to severe
weather.

This paper studies automatic real time hazard level
determination of convective storms using a newrmgtion
source: real time emergency reports. During severe
convective storms, emergency call centers log aelar
number of reports, for example, due to flash flgods
lightning damages and uprooted trees.

Since 2006, the Finnish Meteorological Instituté(f
has received these reports from the emergencygeaters in
real time. This paper discusses attaching thisrimdétion
automatically to weather radar detected storms to
characterize their hazardous properties.

The proposed method uses a weather radar based
convective storm tracking algorithm in the backgrdu
Detected tracks of individual storms and incoming
emergency reports are analyzed to determine thgameship
between each report and a convective storm. Thes, t
method estimates the hazard level for each stosadban
number of associated emergency reports. Finallgedban
the hazard level, we can highlight potentially denogis
convective storms in nowcasting products.

This paper continues the work presented by Rosai. et
(2011).

I1. OBJECT-ORIENTED CONVECTIVE CELL
TRACKING

Object-oriented convective cell tracking algorithare
nowadays well-established methods for nowcasting an
analysis of convective weather. These methods lalee ta
capture motion and life-cycle of individual conveet
storms and enable spatially and temporally acclaasdysis
of individual convective cells. Various storm-redt
attributes, such as radar-based parameters onilightlata,
can be attached to the tracked cells to charaeteheir
properties. Here, we attach real time emergendsg talthe
tracked cells.

Individual convective cells can be tracked, forrapée,
using consecutive weather radar images (e.g. Diaxod
Wiener 1993), satellite images (e.g. Vila et al0&0or
lightning location data (e.g. Tuomi and Larjavad@o5).
Further discussion on convective storm trackingiven for
example by Wilson et al. (1998).

In this paper, the clustering based tracking method
introduced by Rossi and Makeld (2008) is applied for
detecting and tracking convective cells in com@osgieather
radar data. The algorithm identifies cells fromaadata by
using a certain reflectivity threshold value ande th
morphological closing operation, after which thell ce
identification and tracking are performed with ansiéy-
based spatial clustering algorithm. However, thgo@thm
provides only background information for the hazkedel
estimation. Any other well-designed tracking mettuoaild
be applied for similar purposes.

I11. DATA SOURCES AND OBSERVATIONS

The radar data used in this study is obtained firduiiis
eight Doppler C-band weather radar covering alnthst
whole Finland. The tracking algorithm uses constdtitLide
PPI images of 500 m altitude with 5 min temporal anx 1
km spatial resolution.

The source of emergency reports is the real time
emergency report data applied at the FMI. In addlitb the
location of the emergency, each report contain®ase
classification of the emergency type and a shorbale
description of the incident for on-line use

In this paper, we use emergency calls that are pre-
classified by the rescue authorities as the logvgmtion
task. Majority of the calls that are caused by seweeather
belong to this class. Still, this class may contaioth
meteorological and non-meteorological emergencies:
example, a broken water pipe and a storm-flood#drazan
be equally classified as the loss prevention tekkvever,
during a convective situation, amount of “falserals’ with
respect to true weather related events is smad.dlso very
unlikely that a non-meteorological loss preventiask falls
under the path of a convective storm, and therefbee
impact of these calls on our algorithm is usua#gligible.

IV.ESTIMATING STORM HAZARD LEVEL
WITH EMERGENCY CALL INFORMATION
The first step of our algorithm encompasses the
minimum distance computation between each conwectiv
cell track and an emergency report. The distaif(eg,m)
between théth emergency repog; at timet and convective
cellmis defined as the minimum distance between thensto
objects related to cell track history until theggng time of
the emergency and the report location.
The distance is transformed into thetatedness value,
which describes how much an emergency report éaelto
a convective storm. The relatednegs,m) O (0, 1) is
obtained by mapping the distana#e m) through a
Gaussian function with piecewise linear parts
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1, if d(me,)<d,,

(g, m)= glolencio)al /s if d(me,) >d,, v

where dy is the threshold distance aralis the scaling
distance. The thresholdl, is used for compensating
inaccuracies related to the locations of emergeadig and
radar data. In this work, we sd§ = 3 km ands = 20 km,
corresponding to the relatedness 0.5 at an appad&im
distance of 10 km.

Since it is difficult to estimate which cell causéte
event, we compute the relatedness values to ddl wehrby.
Moreover, an emergency may be caused by multiplenst,
for example in a flooding case.

After the relatedness computation, we estimate the
hazard levels of the storms using an autoregressing
average model of relatedness values. Fortieconvective
cell track at timet, the hazard level h(mt) is computed
recursively with

h(m,t)= Ah(m,t - 1)+ Z;l“(‘“m)w(qt)r (e.m), @

whereA O (0, 1) is the user defined forgetting facter,is

the location weight andt(e,m) is thehypothetical delay,

i.e. the delay between emergency report time and tine off

the minimum distance of convective cell history.isTh
parameter scales emergencies with varying delayseply.
Otherwise, delayed emergency calls would have an
exaggerated impact on the hazard level. The suramati

(2) is taken over the emergency reports betweepringous
and current radar image times.

In (2), w(e,) is the population dependent weight of the
emergency eveng; The population density weighting is
necessary, since the flow of incoming emergencls ¢ahd
to increase in densely populated areas. In ourysttite
weight w(e) is computed with the following heuristic
function

w(e,) =log,(p)/logy,(max{p €,)0/3), @)

wherep(e ;) is the population density of the emergency call
location and p is the median. In here, the population
density is 2-2753 people/kmand the median density in
southern Finland is 10.5 people/kmHence in densely
populated areas, the weight is approximately 10.7 times
more than in sparsely populated areas. At the median
population density point the weight is one.

One of the most important future improvements is to
define population density weight (3) statistically, for
example using conditional emergency probability given the
population density. However, this is challenging as the
current emergency data archive is not yet very extensive and
the data is biased by individual intense storm cases.

V.CASE EXAMPLESOF THE AUTOMATIC
HAZARD APPROXIMATION IN FINLAND
a. Intense convective storm, Jun 1 2011
On Jun 1 2011 an intense convective storm caused
extensive damage in the western Finland, especially in the
town of Parkano. The reasons for the reports were mainly
fallen trees. Fig. 1 illustrates the hazard level algorithm in
this case at 12:35 and 12:55 UTC.
The first emergency call that was related to the storm

was recorded at 12:10. Later on, between 12:20-12:35 UTC,
more emergency calls appeared in the vicinity of the storm,
which increased the hazard level significantly. At this point,

a warning could have been issued based on the high hazard
level. A reasonable threshold for issuing warning could be,
for example, the hazard level value of 2. At 12:55 UTC, the
storm hit the town of Parkano, which started an intense
inflow of emergency calls. The flow continued for two hour
after the storm overpassed the town.
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FIG. 1: Convective storm tracking and hazard lesimation on

Jun 1 2011. Red and gray lines show storm trackis sylit and

mergers, red circles show past 5 min emergencg eall magenta
arrows indicate 30 min nowcasts of the storms.

This example illustrates how hazard level information
can be represented as time series information. Fig. 2 shows
the time series of the storm that caused the damage in
Parkano. Blue bars depict the sum of emergency relatedness
values of the incoming emergency calls and the red line
indicates the approximated hazard level. Between 12:30 and
13:00 UTC, the hazard level rises steeply, which reflects
increasing cumulative sum of emergencies caused by the
storm. Magenta bars in Fig. 2 illustrate the time-shifted
summed relatedness, that is equivalent to the summed
emergency relatedness, but instead of incoming emergency
call time instants, the hypothetical delap(g.m) is
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subtracted from the emergency call time. The ggipés an
overview of estimated temporal distribution of therm
damage. In this case, a clear peak is experienmaghe
12:50 UTC, that is, the time when the storm hittthen.
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FIG. 2: Time series of storm emergency data basednpeters on

Jun 1 2011. For discussion, see text.
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b. Mesoscale Convective System, Jul 29 2010

On Jul 29 2010 a severe mesoscale convective system
(MCS) crossed the south-eastern border of Finlar2DZ0
UTC, traversed through the central Finland and coetil to
west until Sweden, where it dissipated approxinyatehe
hours later. A large number of emergencies werertep
during the case, mainly due to uprooted trees bgnse
downbursts.

Immediately when the storm crossed the border,
emergency calls started to pour in, and the halewel of
the storm increased despite the relatively sparsebulated
location of the storm. The flow emergency calls aered
persistent, which guaranteed increasing hazard. |&ig 3
shows the output of the algorithm in this case2a2@ UTC.

This case visualizes also how hazard level infoionat
could be represented in nowcasting tools in anlyeasi
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hazard level estimation on Jul 29 2010. Map symaslm Fig. 1.

understandable manner. A user can see at quickcgglan
which of the storms have caused many emergenocéss (r
color) and which ones have not (white color). lis tbase,
the red MCS is obviously the most dangerous. In the
meantime, the large storm further south does noseany
emergencies, which suggest that the storm is lezartious.
The information box in Fig. 3 provides also otheseful
features on the large red MCS.

V1. DISCUSSION

The presented hazard level approximation method
exemplifies how real time emergency reports can be
combined with weather radar data for automatic rasting
of severe convective storms. The storms that h&eady
caused damage can be highlighted in different netivan
products based on the estimated hazard level. Bhanthe
easily understandable output value, the algoritlomic be
applied by several end-user groups, such as operati
weather forecasters or rescue authorities.

In addition to the real time nowcasting of potelhtia
dangerous storms, the algorithm enables post asalf/she
storms. By means of the algorithm, we can acqueteb
knowledge of the damage caused by the storms ksttate
hazard level evolution or temporal distribution dfe
damage caused by a certain storm cell.

The work presented in this paper provides a good
platform for future developments. A future improvamis a
statistically defined population density weightingethod.
Moreover, the algorithm could utilize forecasteddtions of
the storms; higher hazard level values could bemito
storms threating weather sensitive targets, suctieasely
populated cities. Finally, the hazard level appmation
could be combined with other algorithms that estéama
severity of the storms using radar-derived attabut
lightning location data and other information s@s.c
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