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I. INTRODUCTION  
The interaction of a convective updrafts with ambient 
vertical wind shear has been thoroughly investigated durig 
the past decades (e.g., Barnes, 1970; Rotunno and Klemp, 
1982; Davies-Jones, 1984; Rotunno and Klemp, 1985, 
among many others).  In these studies, it is shown that the 
source of the initial mid-level rotation is horizontal shear 
vorticity associated with the vertical wind shear, which is 
tilted into the vertical by the convective updraft. This 
concept is well established and confirmed observationally 
and numerically.  What the description in terms of vorticity 
does not reveal, however, is how an initially sheared flow is 
transformed into a coherent vortex.  By employing the shear 
and curvature vorticity equations, it can be shown that in the 
often investigated archetypal cases of streamwise and 
crosswise vorticity in the thunderstorm inflow, no vortex 
develops via the tilting process.  Rather, vorticity tilting 
results in vertical shear vorticity in case of crosswise 
vorticity in the inflow, and in curvature vorticity in case of a 
purely helical inflow.  Since a vortex requires the presence 
of both, shear and curvature vorticity, part of the shear 
vorticity must be converted to curvature (crosswise inflow 
case), and part of the curvature vorticity must be converted 
to shear (streamwise inflow case).  The conversion terms are 
determined by the pressure field and the velocity field.  It is 
important to note that this analysis is in no respect 
inconsistent with the perspective of the full vorticity (rather 
than its shear and curvature components); rather, it provides 
deeper insight than the mere vorticity perspective.  The 
often-employed picture showing vortex lines being 
deformed by the updraft, albeit correct, does not reveal these 
details. 

 
II. SHEAR AND CURVATURE VORTICITY 

EQUATIONS 
The shear and curvature equations have only been applied to 
synoptic-scale features in the formal literature, to the 
author's knowledge (Pichler and Steinacker, 1987; Bell and 
Keyser, 1993).  These equations have been expressed in 
pressure coordinates or isentropic coordinates (Hollmann, 
1958; Pichler and Steinacker, 1987; Bell and Keyser, 1993; 
Bleck, 1991; Viúdez and Haney, 1996).  To apply them to a 
supercell, they have been written in height coordinates.  It is 
sufficient to express them in an inertial coordinate system, as 
the earth's rotation plays only a negligible role in the initial 
mid-level mesocyclogenesis.  Also, solenoidal generation of 
vertical vorticity can be neglected.  Then, the following 
equations can be derived (for a detailed derivation, Dahl, 
2006, and Viudez and Haney, 1993): 
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cζ and 
sζ are the shear and curvature vorticity, 

respectively, v
v

 is the horizontal velocity vector, w is the 
vertical velocity, V is the magnitude of the horizontal 

velocity vector; swω
v

 and cwω
v

 are the horizontal 

streamwise and crosswise vorticity vectors, respectively. 

pc is the specific heat of air at constant pressure, and 0θ is 

the potential temperature.  π  is the dimensionless pressure 
given by Exner’s function.  n and s are the directions normal 
and tangential to the streamlines, respectively. 
 
The first terms on the rhs of both equations, (1) and (2), are 
the divergence terms, which - just as in the full vorticity 
equation - describe how a convergent or divergent flow field 
alters the vorticity (either shear or curvature).  Note that, 
e.g., convergence is not able to create curvature vorticity if 
initially there was merely shear vorticity, and vice versa. 
The second terms are the tilting terms.  Vertical curvature 
vorticity is created if the horizontal vorticity is purely 
streamwise.  Vertical shear vorticity is created if the 
horizontal vorticity is purely crosswise.  This means, that in 
these often-discussed cases, no coherent vortex forms. The 
last two terms only differ in the signs, which identifies them 
as conversion or interchange terms.  They require the 
pressure field to have just the proper distribution that 
whenever shear vorticity is depleted, an equal amount of 
curvature vorticity is generated, and vice versa.  Since a 
coherent vortex always requires both, shear and curvature 
vorticity, the conversion terms are required if a vortex forms 
in the updraft after either purely streamwise or purely 
crosswise vorticity has been tilted into the vertical. A way to 
visualize what happens during the tilting of shear vorticity, 
involves isentropic surfaces.  The  flow is assumed to be 
unstably stratified and isentropic.  The updraft is represented 
by a hump in the isentropic surfaces, like in Davies-Jones 
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(1984).  Since the flow is isentropic, the parcels remain on 
their initial isentropic surface.  This implies a “flow over an 
obstacle“ analogy, which is an appropriate model as long as 
the amplitude of the perturbation is small, i.e., in the early 
stages of the supercell's life. 

 
III. METHODOLOGY 

Based on the above theoretical analysis, a simple conceptual 
model can be developed of what actually happens when 
horizontal shear vorticity is tilted into the vertical.  It is 
assumed that the flow is isentropic, while flowing across the 
perturbed isentropes.  Based on these assumptions, the 
horizontal velicity field can be constructed for stream- and 
crosswise vorticity cases.  This heuristic approach confirms 
the validity of the above interpretation.   
 
If a vertical vortex is to be established, shear-to-curvature 
conversions (crosswise vorticity), and curvature-to-shear 
conversions (streamwise vorticity) need to take place, 
respectively.  These depend on the velocity and pressure 
fields.  The pressure field for a Boussinesq flow is given by 
(e.g., Davies-Jones, 2002; Appendix of Dahl, 2006) 
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where p’ is the perturbation pressure, ρ is the density,  

D
t

is the rate of strain tensor, ω
v

is the vorticity vector, and 
B is the buoyancy. 
While the above conceptual model provides some insight, 
more advanced analysis techniques are required to 
investigate the conversion terms.  A numerical analysis is 
the preferred path, providing the pressure and velocity fields 
at every time step, which can be used to calculate the 
conversion terms.  Interestingly, the conversion terms act in 
opposite directions in the streamwise- and crosswise 
vorticity cases. 
 

IV. SUMMARY AND FUTURE RESEARCH 
It has been demonstrated that tilting of horizontal shear 
vorticity does, in general, not produce a vertical vortex.  
Rather, vertical shear vorticity is produced if the 
thunderstorm inflow possesses crosswise vorticity, and 
vertical curvature vorticity is produced if the thunderstorm 
inflow carries streamwise vorticity.  In order to complete a 
vortex, substantial shear-curvature vorticity conversion are 
required.  These depend on the pressure  and velocity fields.  
Further research is planned to demonstrate the role of the 
conversion terms by employing a numerical model like the 
WRF.  Also, quantities other than vorticity may be used to 
investigate storm rotation.  Vorticity is only a local measure 
of rotation, and thus in principle inadequate to identify 
macroscopic vortices (wave and shearing motions also 
possess vorticity); see also Rotunno and Klemp (1985).  
Recently, a 2D "fluid trapping" formalism has been 
developed by Cohen and Shultz (2005): Two fluid parcels, 
which initially may become more and more separated from 
one another with time, may become trapped in certain flow 
regimes.  This is what also happens to air parcels in the 
inflow of a supercell thunderstorm: A vertically sheared 
flow is clearly associated with an increase of the magnitude 
of the separation vector of two initially neighboring parcels.  
When encountering an updraft, the parcels are, at least 
temporarily, trapped in the updraft while being part of the 
mesocyclone.  However, this formalism needs to be 

extended to three dimensions if it is to be applied to 
supercells, which has not been attempted yet, to the author's 
knowledge. 
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